Triggering Conditions and Data Quality
CAR 2 CAR Communication Consortium

Special Vehicle Warning

Partners of the C2C-CC

The present document has been developed within the CAR 2 CAR Communication Consortium and might be further elaborated within the CAR 2 CAR Communication Consortium. The CAR 2 CAR Communication Consortium and its members accept no liability for any use of this document and other documents from the CAR 2 CAR Communication Consortium for implementation. CAR 2 CAR Communication Consortium documents should be obtained directly from the CAR 2 CAR Communication Consortium.

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © 2016, CAR 2 CAR Communication Consortium.
Document information

<table>
<thead>
<tr>
<th>Number:</th>
<th>Version:</th>
<th>Date:</th>
<th>Title:</th>
<th>Document Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.3.0</td>
<td>21.12.2015</td>
<td>C2C-CC Triggering Conditions and Data Quality</td>
<td></td>
</tr>
<tr>
<td>Release</td>
<td>1.1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release Status:</td>
<td>Released</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status:</td>
<td>Completed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Document information
Changes since last version

Title:

Explanatory notes:

<table>
<thead>
<tr>
<th>Issue</th>
<th>Rev.</th>
<th>Date</th>
<th>Changes</th>
<th>Edited by</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>01.12.2015</td>
<td>Reworked according to Volkswagen Change Management AG process and released as part of CAR 2 CAR Release 1.1.0</td>
<td>Klaus Krumbiegel</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>25.07.2014</td>
<td>Use-case specific conditions changed – timer behaviour corrected</td>
<td>Klaus Krumbiegel</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>05.05.2014</td>
<td>Correction regarding ASN.1-changes</td>
<td>Klaus Krumbiegel</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>06.02.2014</td>
<td>Small corrections</td>
<td>Klaus Krumbiegel</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>16.12.2013</td>
<td>Update after review by Conti, Denso, Opel</td>
<td>Klaus Krumbiegel</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>30.09.2013</td>
<td>Comments discussed and accepted</td>
<td>Klaus Krumbiegel</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>03.09.2013</td>
<td>Comments incorporated, iscancellation inserted</td>
<td>Klaus Krumbiegel</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>06.08.2013</td>
<td>Message parameter updated, incorporated</td>
<td>Klaus Krumbiegel</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>23.07.2013</td>
<td>Table for Message Parameters updated, Triggering conditions</td>
<td>Klaus Krumbiegel</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>18.07.2013</td>
<td>General comments from Gerhard WG-APP meeting inserted</td>
<td>Gerhard Fischer</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>21.06.2013</td>
<td>Message Parameters updated</td>
<td>Gerhard Fischer</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>20.06.2013</td>
<td>Chapter for Geo Network Layer for the use cases added</td>
<td>Gerhard Fischer</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11.06.2010</td>
<td>First release after initial Dr. Klaus Krumbiegel creation and review phase.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Change history
Open Issues

None.
Content

Partners of the C2C-CC .. 1
Document information .. 2
Changes since last version ... 3
Open Issues .. 4
Content .. 5
List of tables ... 5

1 Introduction .. 6
 1.1 Abstract ... 6

2 Triggering conditions ... 7
 2.1 Special Vehicle Warning ... 7
 2.1.1 Special Vehicle Warning - Emergency Vehicle in Operation 7
 2.1.2 Special Vehicle Warning - Stationary Safeguarding Emergency Vehicle 15
 2.1.3 Special Vehicle Warning - Stationary Wrecking Service Warning 24

3 Appendix ... 32
 3.1 Scenarios .. 32
 3.2 Open Issues .. 32
 3.3 Feature Requests .. 32
 3.4 List of abbreviations .. 32
 3.5 Applicable documents ... 33
 3.6 Related documents .. 33

List of tables

Table 1: Document information ... 2
Table 2: Change history ... 3
Table 3: Information quality of “Special Vehicle Warning - Emergency Vehicle in Operation”.9
Table 4: DENM data elements of “Special Vehicle Warning - Emergency Vehicle in Operation” ..12
Table 5: CAM data elements of “Special Vehicle Warning - Emergency Vehicle in Operation”13
Table 6: Information quality of “Special Vehicle Warning - Stationary Safeguarding Emergency Vehicle” .. 17
Table 7: DENM data elements of “Special Vehicle Warning - Stationary Safeguarding Emergency Vehicle” .. 20
Table 8: CAM data elements of “Special Vehicle Warning - Stationary Safeguarding Emergency Vehicle” .. 22
Table 9: Information quality of “Special Vehicle Warning - Stationary Wrecking Service Warning” .. 25
Table 10: DENM data elements of “Special Vehicle Warning - Stationary Wrecking Service Warning” .. 29
Table 11: CAM data elements of “Special Vehicle Warning - Stationary Wrecking Service Warning” .. 30
Table 12: Scenarios .. 32
Table 13: Abbreviations ... 33
Table 14: Applicable documents ... 33
1 Introduction

1.1 Abstract

This document describes the triggering conditions for the emergency vehicle warning. The use case is divided in the following three sub use cases:

- Special Vehicle Warning - Emergency Vehicle in Operation
- Special Vehicle Warning - Stationary Safeguarding Emergency Vehicle
- Special Vehicle Warning - Stationary Wrecking Service Warning
2 Triggering conditions

2.1 Special Vehicle Warning

Requirement

RS_tcSpVe_242

The Special Vehicle Warning Use Cases deals with vehicles which are "stationary". A stationary vehicle is defined as follows:

- The vehicle is moving with an absolute speed less than or equal to 8 centimeter per second. The speed shall be determined by internal vehicle sensors (e.g. wheel ticks), not by a GNSS receiver.

2.1.1 Special Vehicle Warning - Emergency Vehicle in Operation

2.1.1.1 Description of Use Case

Other (informational)

RS_tcSpVe_221

An emergency vehicle is any vehicle that is designated and authorized to respond to an emergency. These vehicles are usually operated by designated agencies, often part of the government, but also run by charities, non-governmental organizations and some commercial companies. Emergency vehicles are often permitted by law to break conventional road rules in order to reach their destinations in the fastest possible time, such as (but not limited to) driving through an intersection when the traffic lights are red, or exceeding the speed limit.

Other (informational)

RS_tcSpVe_222

This chapter describes the triggering conditions for the emergency vehicles warning use case. The use case informs drivers of nearby vehicles about an emergency vehicle moving to an operation scene, which is reflected by the use of the light bar.

Requirement

RS_tcSpVe_117

Once the use case is triggered, a DENM shall be transmitted by emergency vehicle ITS-S and parts of CAM data fields shall be set according to chapter 2.1.2.8.2. NOTE: A parallel activation with the Use Case Stationary Safeguarding Emergency Vehicle has to be avoided. For an emergency vehicle ITS-S the default use case is Emergency Vehicle In Operation. A change to the use case Stationary Safeguarding Emergency Vehicle shall only be triggered under certain conditions, see chapter 2.1.2. Hence, an emergency vehicle ITS-S shall be either triggered as a Emergency vehicle in Operation or as a Stationary Safeguarding Emergency Vehicle.

2.1.1.2 Relations to other Use Cases

Other (informational)

RS_tcSpVe_224

The following use cases are related to the Special Vehicle Warning - Emergency Vehicle in Operation use case, because they share similar triggering conditions:

- Special Vehicle Warning - Stationary Safeguarding Emergency Vehicle
- Special Vehicle Warning – Stationary Wrecking Service Warning
As mentioned above, the default use case for an emergency vehicle ITS-S is *Emergency Vehicle in Operation*. A change to the use case *Stationary Safeguarding Emergency Vehicle* shall only be triggered under the conditions defined in chapter 2.1.2.

2.1.1.3 Triggering Conditions

2.1.1.3.1 Preconditions

Requirement

<table>
<thead>
<tr>
<th>Requirement</th>
<th>RS_tcSpVe_119</th>
</tr>
</thead>
</table>

The following preconditions shall be satisfied every time before triggering of this use case is initialised:

- The `stationType` is confirmed to be a special vehicle (`stationType` of CAM is set to `specialVehicles`(10)). The Use Case is restricted to emergency vehicles as prescribed in chapter 2.1.1.1.
- The triggering conditions regarding *Stationary Safeguarding Emergency Vehicle* shall not be satisfied, see chapter 2.1.2.3

2.1.1.3.2 Use Case Specific Conditions

Requirement

<table>
<thead>
<tr>
<th>Requirement</th>
<th>RS_tcSpVe_120</th>
</tr>
</thead>
</table>

Once the following condition is satisfied, the generation of a DENM shall be triggered.

- a. The light bar is in use.

Requirement

<table>
<thead>
<tr>
<th>Requirement</th>
<th>RS_tcSpVe_121</th>
</tr>
</thead>
</table>

The level of information quality can be improved by the following characteristics:

- b. The siren is in use
- c. The vehicle is not stationary.

Requirement

<table>
<thead>
<tr>
<th>Requirement</th>
<th>RS_tcSpVe_122</th>
</tr>
</thead>
</table>

The vehicle speed shall be determined by the CAN bus signal, not by GNSS. The filtered vehicle speed (with respect to sensor noise due to wheel ticks) shall be used. (chap. 2.1.1.3.2)
2.1.1.3.3 Information Quality

Requirement

The value of the data element *informationQuality* in the DENM depends on the way the event is detected. The *informationQuality* value shall be set in the following way (highest possible value shall be used):

<table>
<thead>
<tr>
<th>Event detection</th>
<th>Value of InformationQuality</th>
</tr>
</thead>
<tbody>
<tr>
<td>No TC compliant implementation</td>
<td>unknown(0)</td>
</tr>
<tr>
<td>Condition a) fulfilled</td>
<td>1</td>
</tr>
<tr>
<td>Conditions a) and b) fulfilled</td>
<td>2</td>
</tr>
<tr>
<td>Conditions a) and c) fulfilled</td>
<td>3</td>
</tr>
<tr>
<td>Conditions a), b), and c) fulfilled</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 3: Information quality of “Special Vehicle Warning - Emergency Vehicle in Operation”

Details:

Tested by:

Requirement

If the Triggering Conditions change in between two updates, the *informationQuality* shall not be changed until the next update. If the changed conditions are still fulfilled while the DENM is updated, the *informationQuality* shall be updated.

Details:

Tested by:

2.1.1.4 Termination Conditions

Requirement

The use case shall be terminated when the lightbar is not in use any more. At the termination of the use case, updating of DENMs shall be terminated. The *vehicleRole* shall be set to *default*(0), if the light bar is no longer in use.

Details:

Tested by:

2.1.1.4.1 Cancellation

Requirement

A cancellation DENM shall not be used for this use case.

Details:

Tested by:

2.1.1.4.2 Negation

Requirement

A negation DENM shall not be used for this use case.

Details:

Tested by:
Tested by:

2.1.1.5 Update

Requirement RS_tcSpVe_128

The generated DENM shall be updated every 250 ms if the triggering conditions are still satisfied. All data fields that are assigned new values are defined in chapter 2.1.1.8.1. in Table 4.

Details:
Detailed by:
Tested by:

2.1.1.6 Repetition Duration and Repetition Interval

Requirement RS_tcSpVe_129

A repetition of the DENM shall not be used for this use case.

Details:
Detailed by:
Tested by:

2.1.1.7 Traffic class

Requirement RS_tcSpVe_130

New and update DENMs shall be set to traffic class 1.

Details:
Detailed by:
Tested by:

2.1.1.8 Message Parameter

2.1.1.8.1 DENM

Requirement RS_tcSpVe_131

Table 4 specifies the data elements of the DENM that shall be set.

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>actionID</td>
<td>Identifier of a DENM. Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>detectionTime</td>
<td>Timestamps - Timestamp at which the event is detected by the originating ITS-S. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.</td>
</tr>
<tr>
<td>referenceTime</td>
<td>Timestamps - Timestamp at which a new DENM, an update DENM or a cancellation DENM is generated. Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>termination</td>
<td>Shall not be set, because neither negation nor cancellation shall be used in this use case.</td>
</tr>
<tr>
<td>eventPosition</td>
<td>ReferencePosition. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.</td>
</tr>
<tr>
<td>relevanceDistance</td>
<td>lessThan1000m(4)</td>
</tr>
<tr>
<td>relevanceTrafficDirection</td>
<td>If the roadType is known the value shall be set as follows:</td>
</tr>
</tbody>
</table>
RoadType

<table>
<thead>
<tr>
<th>RoadType</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>allTrafficDirections(0)</td>
</tr>
<tr>
<td>1</td>
<td>upstreamTraffic(1)</td>
</tr>
<tr>
<td>2</td>
<td>allTrafficDirections(0)</td>
</tr>
<tr>
<td>3</td>
<td>upstreamTraffic(1)</td>
</tr>
</tbody>
</table>

Otherwise, the value shall be set to allTrafficDirections(0)

validityDuration

2 seconds

stationType

specialVehicles(10)

Situation Container

informationQuality
See Chapter 2.1.1.3.3. Shall be refreshed for every update DENM

causeCode
emergencyVehicleApproaching (95)

subCauseCode
emergencyVehicleApproaching(1)

Location Container

eventSpeed
Speed of the originating ITS-S. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.

eventPositionHeading
Heading of the originating ITS-S. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.

Traces
PathHistory of the originating ITS-S. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.

roadType
RoadType of the road the detecting ITS-S is situated on. Shall be refreshed for an update DENM. Shall be set according to [AD-3] in combination with the following rules:

<table>
<thead>
<tr>
<th>Urban / Non-Urban</th>
<th>Structural Separation</th>
<th>Data Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>No</td>
<td>urban-NoStructuralSeparation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ToOppositeLanes(0)</td>
</tr>
<tr>
<td>Urban</td>
<td>Yes</td>
<td>urban-StructuralSeparation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ToOppositeLanes(1)</td>
</tr>
<tr>
<td>Urban</td>
<td>Unknown</td>
<td>urban-NoStructuralSeparation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ToOppositeLanes(0)</td>
</tr>
<tr>
<td>Non-Urban</td>
<td>No</td>
<td>nonUrban-NoStructuralSeparation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ToOppositeLanes(0)</td>
</tr>
<tr>
<td>Non-Urban</td>
<td>Yes</td>
<td>nonUrban-NoStructuralSeparation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ToOppositeLanes(2)</td>
</tr>
<tr>
<td>Non-Urban</td>
<td>Unknown</td>
<td>nonUrban-NoStructuralSeparation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ToOppositeLanes(3)</td>
</tr>
</tbody>
</table>

Otherwise, if the information about the urban/non-urban status cannot be determined, the data element shall be omitted.
Alacarte Container

\textit{lanePosition}\ If the \textit{lanePosition} is provided by an onboard sensor (e.g. radar, camera), the value shall be set according to [AD-3]. The use of GPS and a digital map for the estimation of the lane number is not legitimate for this version of the triggering condition. If the \textit{lanePosition} is unknown, the data element shall be omitted. Shall be refreshed for an update DENM.

Alacarte Container: StationaryVehicleContainer

\textit{stationarySince}\ Shall be set according to the duration in minutes of the detecting ITS-S being stationary. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.

Table 4: DENM data elements of “Special Vehicle Warning - Emergency Vehicle in Operation”

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoopAwareness</td>
<td></td>
</tr>
<tr>
<td>generationDeltaTime</td>
<td>Time corresponding to the time of the reference position in the CAM,</td>
</tr>
<tr>
<td></td>
<td>considered as time of the CAM generation.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-2].</td>
</tr>
<tr>
<td>BasicContainer</td>
<td></td>
</tr>
<tr>
<td>stationType</td>
<td>specialVehicles(10)</td>
</tr>
<tr>
<td>referencePosition</td>
<td>Position and position accuracy measured at the reference point of the</td>
</tr>
<tr>
<td></td>
<td>originating ITS-S.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>HighFrequencyContainer shall be set to BasicVehicleContainerHighFrequency</td>
<td></td>
</tr>
<tr>
<td>Heading</td>
<td>Heading direction of the originating ITS-S with regards to the true</td>
</tr>
<tr>
<td></td>
<td>north.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>Speed</td>
<td>Driving speed of the originating ITS-S.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-3].</td>
</tr>
</tbody>
</table>
driveDirection | Vehicle drive direction (Forward or Backward) of the originating ITS-S. Shall be set according to [AD-3].
---|---
vehicleLength | Length of vehicle. Shall be set according to [AD-3].
vehicleWidth | Width of a vehicle. Shall be set according to [AD-3].
lateralAcceleration | Vehicle lateral acceleration of the originating ITS-S. Shall be set according to [AD-3].
curvature | Curvature of the vehicle trajectory and the accuracy. Shall be set according to [AD-3].
lateralAccelerationCalcMode | Describes whether the yaw rate is used to calculate the curvature for a reported curvature value. Shall be set according to [AD-3].
yawRate | Yaw rate of vehicle at a point in time. Shall be set according to [AD-3].

LowFrequencyContainer shall be set to BasicVehicleContainerLowFrequency

<table>
<thead>
<tr>
<th>property</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicleRole</td>
<td>emergency(6)</td>
</tr>
<tr>
<td>exteriorLights</td>
<td>Describes the status of the exterior light switches of a vehicle. Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>pathHistory</td>
<td>Represents the vehicle's recent movement over some past time and/or distance. Shall be set according to [AD-3].</td>
</tr>
</tbody>
</table>

SpecialVehicleContainer shall be set to EmergencyContainer

<table>
<thead>
<tr>
<th>property</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lightBarSirenInUse</td>
<td>lightBarActivated bit shall be set to 1(onChange), if the usage of the lightbar is detected, otherwise, it shall be set to 0. sirenActivated bit shall be set to 1, if usage of the siren is detected, otherwise, it shall be set to 0.</td>
</tr>
<tr>
<td>emergencyPriority</td>
<td>Is not required</td>
</tr>
<tr>
<td>causeCode</td>
<td>As specified in DENM (2.1.1.8.1)</td>
</tr>
<tr>
<td>subCauseCode</td>
<td>As specified in DENM (2.1.1.8.1)</td>
</tr>
</tbody>
</table>

Table 5: CAM data elements of “Special Vehicle Warning - Emergency Vehicle in Operation”

Details:
Detailed by:
 Tested by:

2.1.1.9 Networking and Transport Layer

Requirement

RS_tcSpVe_134

For the Day One version of this application, the destination area is the same as the relevance area - in this case, a circle of radius *relevanceDistance*. Therefore, the interface parameter *DENM destination area* between the DEN basic service and the Networking & Transport layer shall be equal to a circular shape with radius equal to *relevanceDistance*.

Details:
Detailed by:
 Tested by:
Requirement RS_tcSpVe_135
The interface parameter hopLimit between the DEN basic service and the GeoNetworking/BTP shall be set to the maximum value, according to [AD-4] (in current specification of [AD-4]: 10). This indicates that the receiver shall hop this message. The Advanced forwarding algorithm for GeoBroadcast, according to [AD-4], shall be used.
Details:
Detailed by:
Tested by:

2.1.1.10 Security Layer
Requirement RS_tcSpVe_136
If the triggering conditions as described in chapter 2.1.1.3 apply, a pseudonym (ID) change shall be blocked for DENMs as long as validityDuration is not expired (see chapter 2.1.1.8.1). Corresponding new, update and cancellation DENMs shall be sent with the same pseudonym.
Details:
Detailed by:
Tested by:
2.1.2 Special Vehicle Warning - Stationary Safeguarding Emergency Vehicle

2.1.2.1 Description of Use Case

Other (informational) RS_tcSpVe_225
The emergency vehicle safeguards a stationary hazard area, e.g. caused by an accident or fire.
In this use case, the C2C basic system informs the driver of an emergency vehicle safeguarding a stationary hazard area.

Requirement RS_tcSpVe_137
Once the use case is triggered, the Stationary safeguarding emergency vehicle shall transmit a DENM and shall set data fields of CAM according to the rules specified in the current chapter.
NOTE: A parallel activation with the Use Case Emergency Vehicle in Operation has to be avoided, i.e. an emergency vehicle ITS-S shall be either triggered as a Emergency Vehicle in Operation or as a Stationary Safeguarding Emergency Vehicle. The default use case for an emergency vehicle ITS-S is Emergency Vehicle in Operation, a change to the Stationary Safeguarding Emergency Vehicle shall only be triggered under the conditions defined in this chapter.
Details:
Detailed by:
Tested by:

2.1.2.2 Relations to other Use Cases

Other (informational) RS_tcSpVe_227
The following use cases are related to the Special Vehicle Warning - Stationary Safeguarding Emergency Vehicle use case, because they share similar triggering conditions:
- Special Vehicle Warning – Emergency Vehicle in Operation
- Special Vehicle Warning – Stationary Wrecking Service Warning

2.1.2.3 Triggering Conditions

2.1.2.3.1 Preconditions

Requirement RS_tcSpVe_138
The following preconditions shall be satisfied every time before triggering of this use case is initialised:
- The stationType is confirmed to be an emergency vehicle (stationType of CAM is set to specialVehicles(10)). The Use Case is restricted to emergency vehicles as prescribed in chapter 2.1.1.1.
- The Standstill Timer shall be initialised with zero.
Details:
Detailed by:
Tested by:

Requirement RS_tcSpVe_139
For an emergency vehicle ITS-S the default use case is Emergency Vehicle In Operation. A change to the use case Stationary Safeguarding Emergency Vehicle shall only be triggered under the use case specific conditions, defined in chapter 2.1.2.3.2.
Details:
2.1.2.3.2 Use Case Specific Conditions

Requirement

RS_tcSpVe_140

If the vehicle is stationary and the light bar is in use a Standstill Timer shall be initialized with zero and started. If the light bar is no longer in use or the vehicle is no longer stationary the Standstill Timer shall be stopped and reset to zero.

Details:
Detailed by:
Tested by:

Requirement

RS_tcSpVe_240

Once at least one of the following conditions is satisfied, the triggering conditions for this use case are fulfilled and the generation of a DENM shall be triggered.

- a. Light bar is in use and engine relay is activated.
- b. Light bar is in use, hazard light is activated and parking brake is activated or in case of automatic transmission parking position is chosen.
- c. Light bar is in use, hazard lights are activated and the Standstill Timer is greater than or equal to 60 seconds.

Details:
Detailed by:
Tested by:

Requirement

RS_tcSpVe_142

The vehicle speed shall be determined by the CAN bus signal, not by GNSS. The filtered vehicle speed (with respect to sensor noise due to wheel ticks) shall be used. This requirement shall be applied for all following occurrences of vehicle speed analysis.

Details:
Detailed by:
Tested by:

Requirement

RS_tcSpVe_143

The level of information quality can be improved by the following characteristics:

- d. Status of at least one door or trunk is "open"
- e. Driver's seat is detected as "not occupied". The condition shall be detected by one of the following techniques:
 - a. Passenger compartment camera
 - b. State of the art technique for seat occupation used in seat belt reminder

Details:
Detailed by:
Tested by:

Requirement

RS_tcSpVe_144

If the use case is triggered due to fulfillment of condition a) or b), the Standstill Timer shall be stopped and set to 60 seconds. In the update phase, only the conditions shall be checked, but no timer shall be started.
2.1.2.3.3 Information Quality

Requirement RS_tcSpVe_145

The value of the data element `informationQuality` in the DENM depends on the way the event is detected. The `informationQuality` value shall be set in the following way (highest possible value shall be used):

<table>
<thead>
<tr>
<th>Event detection</th>
<th>Value of InformationQuality</th>
</tr>
</thead>
<tbody>
<tr>
<td>No TC compliant implementation</td>
<td>unknown(0)</td>
</tr>
<tr>
<td>Condition c) fulfilled</td>
<td>1</td>
</tr>
<tr>
<td>Condition b) fulfilled</td>
<td>2</td>
</tr>
<tr>
<td>At least one of conditions b) or c) fulfilled and condition d) fulfilled</td>
<td>3</td>
</tr>
<tr>
<td>At least one of conditions b) or c) fulfilled and condition e) fulfilled</td>
<td>4</td>
</tr>
<tr>
<td>Condition a) fulfilled</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 6: Information quality of “Special Vehicle Warning - Stationary Safeguarding Emergency Vehicle”

2.1.2.4 Termination Conditions

Requirement RS_tcSpVe_146

If the Triggering Conditions change in between two updates, the `informationQuality` shall not be changed until the next update. If the changed conditions are still fulfilled while the DENM is updated, the `informationQuality` shall be updated.

2.1.2.4.1 Cancellation

Requirement RS_tcSpVe_148

Once the following condition is satisfied before the time period set in the data element `validityDuration` is expired, the generation of a cancellation DENM shall be triggered.
- All of the use case specific conditions a) to c) in chapter 2.1.2.3.2 are no longer satisfied.

The `vehicleRole` shall be set to `default(0)`, if the light bar is no longer in use.

Details:
Detailed by:
Tested by:

2.1.2.4.2 Negation

Requirement

RS_tcSpVe_149

A negation DENM shall not be used for this use case.

Details:
Detailed by:
Tested by:

2.1.2.5 Update

Requirement

RS_tcSpVe_150

The generation of an update DENM shall be triggered every 60s, if the triggering conditions are still satisfied. All data fields that are assigned new values are defined in chapter 2.1.2.8.1 in Table 7.

Details:
Detailed by:
Tested by:

2.1.2.6 Repetition Duration and Repetition Interval

Requirement

RS_tcSpVe_151

New, cancellation and update DENMs shall be repeated for a `repetitionDuration` of 60 s with a `repetitionInterval` of 1 s. Therefore the interface parameters `Repetition duration` and `Repetition interval` between the application and the DEN basic service shall be set according to the values above.

NOTE: The `validityDuration` shall be set to 180 s. Therefore, one can prevent a gap of DENMs if the `validityDuration` of the original DENM is expired and the update has not been received yet.

NOTE: The case of managing two DENMs with the same `causeCode` from the same originating ITS-S has to be handled by the receiving ITS-S.

Details:
Detailed by:
Tested by:

2.1.2.7 Traffic class

Requirement

RS_tcSpVe_152

New, cancellation and update DENMs shall be set to `traffic class` 1.

Details:
Detailed by:
Tested by:

2.1.2.8 Message Parameter

2.1.2.8.1 DENM
Table 7 specifies the data elements of the DENM that shall be set.

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Container</td>
<td></td>
</tr>
<tr>
<td>actionID</td>
<td>Identifier of a DENM. Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>detectionTime</td>
<td>Timestamp - Timestamp at which the event is detected by the originating ITS-S. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.</td>
</tr>
<tr>
<td>referenceTime</td>
<td>Timestamp - Timestamp at which a new DENM, an update DENM or a cancellation DENM is generated. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.</td>
</tr>
<tr>
<td>termination</td>
<td>Shall not be set in case of new or update DENM. Shall be set to isCancellation(0) in case of fulfillment of cancellation conditions, see chapter 2.1.2.4.1.</td>
</tr>
<tr>
<td>eventPosition</td>
<td>ReferencePosition. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.</td>
</tr>
<tr>
<td>relevanceDistance</td>
<td>lessThan5km(5)</td>
</tr>
<tr>
<td>relevanceTrafficDirection</td>
<td>If the roadType is known the value shall be set as follows:</td>
</tr>
<tr>
<td>RoadType</td>
<td>Direction</td>
</tr>
<tr>
<td>0</td>
<td>allTrafficDirections(0)</td>
</tr>
<tr>
<td>1</td>
<td>upstreamTraffic(1)</td>
</tr>
<tr>
<td>2</td>
<td>allTrafficDirections(0)</td>
</tr>
<tr>
<td>3</td>
<td>upstreamTraffic(1)</td>
</tr>
<tr>
<td></td>
<td>Otherwise, the value shall be set to allTrafficDirections(0)</td>
</tr>
<tr>
<td>validityDuration</td>
<td>180 seconds</td>
</tr>
<tr>
<td>stationType</td>
<td>specialVehicles(10)</td>
</tr>
<tr>
<td>Situation Container</td>
<td></td>
</tr>
<tr>
<td>informationQuality</td>
<td>See Chapter 2.1.2.3.3. Shall be refreshed for every update DENM</td>
</tr>
<tr>
<td>causeCode</td>
<td>rescueAndRecoveryWorkInProgress(15)</td>
</tr>
<tr>
<td>subCauseCode</td>
<td>emergencyVehicles(1)</td>
</tr>
<tr>
<td>Location Container</td>
<td></td>
</tr>
<tr>
<td>eventSpeed</td>
<td>Speed of the originating ITS-S. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.</td>
</tr>
<tr>
<td>eventPositionHeading</td>
<td>Heading of the originating ITS-S. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.</td>
</tr>
<tr>
<td>traces</td>
<td>PathHistory of the originating ITS-S. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.</td>
</tr>
</tbody>
</table>
If the PathDeltaTime is used in the PathPoints, the PathDeltaTime of the first PathPoint (closest point to the ReferencePosition) shall be refreshed for an update DENM. All other PathPoints shall not be refreshed. If the PathDeltaTime of the first PathPoint exceeds the maximum value according to [AD-3], the PathDeltaTime shall not be further refreshed.

If the PathDeltaTime is not used in the PathPoints, the PathHistory shall not be refreshed for an update DENM.

<table>
<thead>
<tr>
<th>roadType</th>
<th>RoadType of the road the detecting ITS-S is situated on. Shall be refreshed for an update DENM. Shall be set according to [AD-3] in combination with the following rules:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban / Non-Urban</td>
<td>Structural Separation</td>
</tr>
<tr>
<td>Urban</td>
<td>No</td>
</tr>
<tr>
<td>Urban</td>
<td>Yes</td>
</tr>
<tr>
<td>Urban</td>
<td>Unknown</td>
</tr>
<tr>
<td>Non-Urban</td>
<td>No</td>
</tr>
<tr>
<td>Non-Urban</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-Urban</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Otherwise, if the information about the urban/non-urban status cannot be determined, the data element shall be omitted.

<table>
<thead>
<tr>
<th>Alacarte Container: StationaryVehicleContainer</th>
</tr>
</thead>
<tbody>
<tr>
<td>stationarySince</td>
</tr>
</tbody>
</table>

Table 7: DENM data elements of “Special Vehicle Warning - Stationary Safeguarding Emergency Vehicle”

Details:
2.1.2.8.2 CAM

Requirement RS_tcSpVe_154

The vehicleRole is initialised to be a "default" vehicle (vehicleRole of CAM set to default(0)). If at least one of the use case specific triggering conditions defined in chapter 2.1.2.3.2. is satisfied the vehicleRole shall be set to emergency(6).

Details:

Requirement RS_tcSpVe_155

Table 8 specifies the data elements of the CAM that shall be set if the use case is triggered.

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>generationDeltaTime</td>
<td>Time corresponding to the time of the reference position in the CAM,</td>
</tr>
<tr>
<td></td>
<td>considered as time of the CAM generation.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-2].</td>
</tr>
<tr>
<td>stationType</td>
<td>specialVehicles(10)</td>
</tr>
<tr>
<td>referencePosition</td>
<td>Position and position accuracy measured at the reference point of</td>
</tr>
<tr>
<td></td>
<td>the originating ITS-S.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>heading</td>
<td>Heading direction of the originating ITS-S with regards to the true</td>
</tr>
<tr>
<td></td>
<td>north.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>speed</td>
<td>Driving speed of the originating ITS-S.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>driveDirection</td>
<td>Vehicle drive direction (Forward or Backward) of the originating ITS-</td>
</tr>
<tr>
<td></td>
<td>S.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>vehicleLength</td>
<td>Length of vehicle.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>vehicleWidth</td>
<td>Width of a vehicle.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>longitudinalAcceleration</td>
<td>Vehicle longitudinal acceleration of the originating ITS-S.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>curvature</td>
<td>Curvature of the vehicle trajectory and the accuracy.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>curvatureCalcMode</td>
<td>Describes whether the yaw rate is used to calculate the curvature</td>
</tr>
<tr>
<td></td>
<td>for a reported curvature value.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-3].</td>
</tr>
</tbody>
</table>
yawRate | Yaw rate of vehicle at a point in time. Shall be set according to [AD-3].

LowFrequencyContainer shall be set to BasicVehicleContainerLowFrequency

<table>
<thead>
<tr>
<th>vehicleRole</th>
<th>emergency(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>exteriorLights</td>
<td>Describes the status of the exterior light switches of a vehicle. Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>pathHistory</td>
<td>Represents the vehicle’s recent movement over some past time and/or distance. Shall be set according to [AD-3].</td>
</tr>
</tbody>
</table>

SpecialVehicleContainer shall be set to EmergencyContainer

lightBarSirenInUse	lightBarActivated bit shall be set to 1(onChange), if the usage of the lightbar is detected, otherwise, it shall be set to 0. sirenActivated bit shall be set to 1, if usage of the siren is detected, otherwise, it shall be set to 0.
emergencyPriority	Is not required
causeCode	As specified in DENM (2.1.2.8.1)
subCauseCode	As specified in DENM (2.1.2.8.1)

Table 8: CAM data elements of “Special Vehicle Warning - Stationary Safeguarding Emergency Vehicle”

Details:
Detailed by:
Tested by:

2.1.2.9 Networking and Transport Layer

Requirement

RS_tcSpVe_156

For the Day One version of this application, the destination area is the same as the relevance area - in this case, a circle of radius `relevanceDistance`. Therefore, the interface parameter `DENM destination area` between the DEN basic service and the Networking & Transport layer shall be equal to a circular shape with radius equal to `relevanceDistance`.

Details:
Detailed by:
Tested by:

Requirement

RS_tcSpVe_157

The interface parameter `hopLimit` between the DEN basic service and the GeoNetworking/BTP shall be set to the maximum value, according to [AD-4] (in current specification of [AD-4]: 10). This indicates that the receiver shall hop this message. The *Advanced forwarding algorithm for GeoBroadcast*, according to [AD-4], shall be used.

Details:
Detailed by:
Tested by:

2.1.2.10 Security Layer

Requirement

RS_tcSpVe_158
If the triggering conditions as described in chapter 2.1.2.3 apply, a pseudonym (ID) change shall be blocked for DENMs as long as validityDuration is not expired (see chapter 2.1.2.8.1). Corresponding new, update and cancellation DENMs shall be sent with the same pseudonym.

Details:
Detailed by:
Tested by:
2.1.3 Special Vehicle Warning - Stationary Wrecking Service Warning

2.1.3.1 Description of Use Case

Other (informational) RS_tcSpVe_229
The wrecking service supports a broken vehicle, i.e. standing on the right lane of the road representing a hazardous location. The use case of the moving wrecking service e.g. carrying a broken vehicle is covered by the common CAM.

2.1.3.2 Relations to other Use Cases

Other (informational) RS_tcSpVe_230
The following use cases are related to the Special Vehicle Warning - Stationary Wrecking Service Warning use case, because they share similar triggering conditions:
- Special Vehicle Warning – Emergency Vehicle in Operation
- Special Vehicle Warning – Stationary Safeguarding Emergency Vehicle

2.1.3.3 Triggering Conditions

2.1.3.3.1 Preconditions

Requirement RS_tcSpVe_159
The following preconditions shall be satisfied every time before triggering of this use case is initialised:
- The stationType is confirmed to be an special vehicle (stationType of CAM is set to specialVehicles(10)). The Use Case is restricted to wrecking service cars.
- The Standstill Timer shall be initialised with zero.

Details:
Detailed by:
Tested by:

2.1.3.3.2 Use Case Specific Conditions

Requirement RS_tcSpVe_160
If the vehicle is stationary and the light bar is in use a Standstill Timer shall be initialized with zero and started. If the light bar is no longer in use or the vehicle is no longer stationary the Standstill Timer shall be stopped and reset to zero.

Details:
Detailed by:
Tested by:

Requirement RS_tcSpVe_241
Once at least one of the following conditions is satisfied, the triggering conditions for this use case are fulfilled and the generation of a DENM shall be triggered.

a. Light bar is in use, hazard lights are activated and parking brake is activated or in case of automatic transmission parking position is chosen.

b. Light bar is in use, hazard lights are activated and the Standstill Timer is greater than or equal 60 seconds.

Details:
Detailed by:
Tested by:
Requirement RS_tcSpVe_162
The vehicle speed shall be determined by the CAN bus signal, not by GNSS. The filtered vehicle velocity (with respect to sensor noise due to wheel ticks) shall be used. This requirement shall be applied for all following occurrences of vehicle speed analysis.
Details:
Detailed by:
Tested by:

Requirement RS_tcSpVe_163
The level of Information quality can be improved by the following characteristics:
 c. Status of driver door is "open"
 d. Driver's seat is detected as "not occupied". The condition shall be detected by one of the following techniques:
 a. Passenger compartment camera
 b. State of the art technique for seat occupation used in seat belt reminder
Details:
Detailed by:
Tested by:

Requirement RS_tcSpVe_164
If the use case is triggered due to fulfillment of condition a), the Standstill Timer shall be stopped and set to 60 seconds. In the update phase, only the conditions shall be checked, but no timer shall be started.
Details:
Detailed by:
Tested by:

2.1.3.3.3 Information Quality

Requirement RS_tcSpVe_165
The value of the data element informationQuality in the DENM depends on the way the event is detected. The informationQuality value shall be set in the following way (highest possible value shall be used):

<table>
<thead>
<tr>
<th>Event detection</th>
<th>Value of InformationQuality</th>
</tr>
</thead>
<tbody>
<tr>
<td>No TC compliant implementation</td>
<td>unknown(0)</td>
</tr>
<tr>
<td>Condition b) fulfilled</td>
<td>1</td>
</tr>
<tr>
<td>Conditions a) fulfilled</td>
<td>2</td>
</tr>
<tr>
<td>At least one of conditions a) or b) fulfilled and condition c) fulfilled</td>
<td>3</td>
</tr>
<tr>
<td>At least one of conditions a) or b) fulfilled and condition d) fulfilled</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 9: Information quality of “Special Vehicle Warning - Stationary Wrecking Service Warning”

Details:
Detailed by:
Tested by:
If the Triggering Conditions change in between two updates, the *informationQuality* shall not be changed until the next update. If the changed conditions are still fulfilled while the DENM is updated, the *informationQuality* shall be updated.

Details:
Detailed by:
Tested by:

2.1.3.4 Termination Conditions

Requirement

RS_tcSpVe_167

This use case is terminated by a cancellation of the originating ITS-S. At the termination of the use case, update DENM request shall be terminated.

Details:
Detailed by:
Tested by:

2.1.3.4.1 Cancellation

Requirement

RS_tcSpVe_168

Once the following condition is satisfied before the time period set in the data element *validityDuration* is expired, the generation of a cancellation DENM shall be triggered.

- Use case specific conditions a) to b) in chapter 2.1.3.3.2 are not satisfied.

The *vehicleRole* shall be set to *default(0)*.

Details:
Detailed by:
Tested by:

2.1.3.4.2 Negation

Requirement

RS_tcSpVe_169

A negation DENM shall not be used for this use case.

Details:
Detailed by:
Tested by:

2.1.3.5 Update

Requirement

RS_tcSpVe_170

The generation of an update DENM shall be triggered every 60s, if the triggering conditions are still satisfied. All data fields that are assigned new values are defined in chapter 2.1.2.8.1 in Table 10.

Details:
Detailed by:
Tested by:

2.1.3.6 Repetition Duration and Repetition Interval

Requirement

RS_tcSpVe_171

New, cancellation and update DENMs shall be repeated for a *repetitionDuration* of 60 s with a *repetitionInterval* of 1 s. Therefore the interface parameters *Repetition duration* and *Repetition
interval between the application and the DEN basic service shall be set according to the values above.

NOTE: The validityDuration shall be set to 180 s. Therefore, one can prevent a gap of DENMs if the validityDuration of the original DENM is expired and the update has not been received yet.

NOTE: The case of managing two DENMs with the same causeCode from the same originating ITS-S has to be handled by the receiving ITS-S.

Details:
Detailed by:
Tested by:

2.1.3.7 Traffic class

Requirement

New, cancellation and update DENMs shall be set to traffic class 1.

Details:
Detailed by:
Tested by:

2.1.3.8 Message Parameter

2.1.3.8.1 DENM

Requirement

Table 10 specifies the data elements of the DENM that shall be set.

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>actionID</td>
<td>Identifier of a DENM. Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>detectionTime</td>
<td>\textit{TimestampIts-} Timestamp at which the event is detected by the originating ITS-S. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.</td>
</tr>
<tr>
<td>referenceTime</td>
<td>\textit{TimestampIts-} Timestamp at which a new DENM, an update DENM or a cancellation DENM is generated. Shall be set according to [AD-3].</td>
</tr>
<tr>
<td>Termination</td>
<td>Shall not be set in case of new or update DENM. Shall be set to isCancellation(0) in case of fulfillment of cancellation conditions, see chapter 2.1.3.4.1.</td>
</tr>
<tr>
<td>eventPosition</td>
<td>\textit{ReferencePosition}. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.</td>
</tr>
<tr>
<td>relevanceDistance</td>
<td>lessThan5km(5)</td>
</tr>
<tr>
<td>relevanceTrafficDirection</td>
<td>If the roadType is known the value shall be set as follows:</td>
</tr>
<tr>
<td>RoadType</td>
<td>Direction</td>
</tr>
<tr>
<td>0</td>
<td>allTrafficDirections(0)</td>
</tr>
<tr>
<td>1</td>
<td>upstreamTraffic(1)</td>
</tr>
<tr>
<td>2</td>
<td>allTrafficDirections(0)</td>
</tr>
<tr>
<td>3</td>
<td>upstreamTraffic(1)</td>
</tr>
</tbody>
</table>

Otherwise, the value shall be set to allTrafficDirections(0)
validityDuration: 180 seconds
stationType: specialVehicles\(^{(10)}\)

Situation Container

informationQuality See Chapter 2.1.3.3.3. Shall be refreshed for every update DENM

causeCode rescueAndRecoveryWorkInProgress\(^{(15)}\)

subCauseCode unavailable\(^{(0)}\)

Location Container

eventSpeed Speed of the originating ITS-S. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.

eventPositionHeading Heading of the originating ITS-S. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.

Traces

PathHistory of the originating ITS-S. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.

If the PathDeltaTime is used in the PathPoints, the PathDeltaTime of the first PathPoint (closest point to the ReferencePosition) shall be refreshed for an update DENM. All other PathPoints shall not be refreshed. If the PathDeltaTime of the first PathPoint exceeds the maximum value according to [AD-3], the PathDeltaTime shall not be further refreshed.

If the PathDeltaTime is not used in the PathPoints, the PathHistory shall not be refreshed for an update DENM.

roadType *RoadType* of the road the detecting ITS-S is situated on. Shall be refreshed for an update DENM.

Shall be set according to [AD-3] in combination with the following rules:

<table>
<thead>
<tr>
<th>Urban / Non-Urban</th>
<th>Structural Separation</th>
<th>Data Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>No</td>
<td>urban-NoStructuralSeparationToOppositeLanes(^{(0)})</td>
</tr>
<tr>
<td>Urban</td>
<td>Yes</td>
<td>urban-WithStructuralSeparationToOppositeLanes(^{(1)})</td>
</tr>
<tr>
<td>Urban</td>
<td>unknown</td>
<td>urban-NoStructuralSeparationToOppositeLanes(^{(0)})</td>
</tr>
<tr>
<td>Non-Urban</td>
<td>No</td>
<td>nonUrban-NoStructuralSeparationToOppositeLanes(^{(2)})</td>
</tr>
<tr>
<td>Non-Urban</td>
<td>Yes</td>
<td>nonUrban-WithStructuralSeparationToOppositeLanes(^{(3)})</td>
</tr>
</tbody>
</table>
Non-Urban | Unknown | nonUrban-NoStructuralSeparationToOppositeLanes(2) |
---|---|---|

Otherwise, if the information about the urban/non-urban status cannot be determined, the data element shall be omitted.

Alacarte Container

lanePosition

If the lanePosition is provided by an onboard sensor (e.g. radar, camera), the value shall be set according to [AD-3]. The use of GPS and a digital map for the estimation of the lane number is not legitimate for this version of the triggering condition.

If the lanePosition is unknown, the data element shall be omitted. Shall be refreshed for an update DENM.

Alacarte Container: StationaryVehicleContainer

stationarySince

Shall be set according to the duration in minutes of the detecting ITS-S being stationary. Shall be set according to [AD-3]. Shall be refreshed for an update DENM.

Table 10: DENM data elements of “Special Vehicle Warning - Stationary Wrecking Service Warning”

Details:
Detailed by:
Tested by:

2.1.3.8.2 CAM Requirement

RS_tcSpVe_174

The vehicleRole shall be initialised as a "default" vehicle (**vehicleRole** of CAM set to **default**(0)). If at least one of the use case specific triggering conditions defined in chapter 2.1.3.3.2 is satisfied the **vehicleRole** shall be set to **rescue**(5).

Details:
Detailed by:
Tested by:

Table 11: DENM data elements of the CAM that shall be set if the use case is triggered.

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoopAwareness</td>
<td></td>
</tr>
<tr>
<td>generationDeltaTime</td>
<td>Time corresponding to the time of the reference position in the CAM,</td>
</tr>
<tr>
<td></td>
<td>considered as time of the CAM generation.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-2].</td>
</tr>
<tr>
<td>BasicContainer</td>
<td></td>
</tr>
<tr>
<td>stationType</td>
<td>specialVehicles(10)</td>
</tr>
<tr>
<td>referencePosition</td>
<td>Position and position accuracy measured at the reference point of the</td>
</tr>
<tr>
<td></td>
<td>originating ITS-S.</td>
</tr>
<tr>
<td></td>
<td>Shall be set according to [AD-3].</td>
</tr>
</tbody>
</table>

HighFrequencyContainer shall be set to **BasicVehicleContainerHighFrequency**.
heading	Heading direction of the originating ITS-S with regards to the true north. Shall be set according to [AD-3].
speed | Driving speed of the originating ITS-S. Shall be set according to [AD-3].
---|---
driveDirection | Vehicle drive direction (Forward or Backward) of the originating ITS-S. Shall be set according to [AD-3].
---|---
vehicleLength | Length of vehicle. Shall be set according to [AD-3].
---|---
vehicleWidth | Width of a vehicle. Shall be set according to [AD-3].
---|---
longitudinalAcceleration | Vehicle longitudinal acceleration of the originating ITS-S. Shall be set according to [AD-3].
---|---
curvature | Curvature of the vehicle trajectory and the accuracy. Shall be set according to [AD-3].
---|---
curvatureCalcMode | Describes whether the yaw rate is used to calculate the curvature for a reported curvature value. Shall be set according to [AD-3].
---|---
yawRate | Yaw rate of vehicle at a point in time. Shall be set according to [AD-3].
---|---
LowFrequencyContainer shall be set to BasicVehicleContainerLowFrequency
vehicleRole | rescue(5)
---|---
exteriorLights | Describes the status of the exterior light switches of a vehicle. Shall be set according to [AD-3].
---|---
pathHistory | Represents the vehicle’s recent movement over some past time and/or distance. Shall be set according to [AD-3].
---|---
SpecialVehicleContainer shall be set to SafetyCarContainer
lightBarSirenInUse | lightBarActivated bit shall be set to 1(onChange), if the usage of the lightbar is detected, otherwise, it shall be set to 0. sirenActivated bit shall be set to 1, if usage of the siren is detected, otherwise, it shall be set to 0.
---|---
causeCode | As specified in DENM (2.1.3.8.1)
---|---
sub Cause Code | As specified in DENM (2.1.3.8.1)
---|---

Table 11: CAM data elements of “Special Vehicle Warning - Stationary Wrecking Service Warning”

Details:
Detailed by:
Tested by:

2.1.3.9 Networking and Transport Layer

Requirement RS_tcSpVe_176

For the Day One version of this application, the destination area is the same as the relevance area - in this case, a circle of radius relevanceDistance. Therefore, the interface parameter
DENM destination area between the DEN basic service and the Networking & Transport layer shall be equal to a circular shape with radius equal to relevanceDistance.

Details:
Detailed by:
Tested by:

Requirement RS_tcSpVe_177
The interface parameter hopLimit between the DEN basic service and the GeoNetworking/BTP shall be set to the maximum value, according to [AD-4] (in current specification of [AD-4]: 10). This indicates that the receiver shall hop this message. The Advanced forwarding algorithm for GeoBroadcast, according to [AD-4], shall be used.

Details:
Detailed by:
Tested by:

2.1.3.10 Security Layer

Requirement RS_tcSpVe_178
If the triggering conditions as described in chapter 2.1.3.3 apply, a pseudonym (ID) change shall be blocked for DENMs as long as validityDuration is not expired (see chapter 2.1.3.8.1). Corresponding new, update and cancellation DENMs shall be sent with the same pseudonym.

Details:
Detailed by:
Tested by:
3 Appendix

3.1 Scenarios
Other (informational) RS_tcSpVe_232
This section has an informational character and is not part of the requirement specification.
The following list encompasses scenarios which are regarded as relevant or irrelevant considering the present use case:

<table>
<thead>
<tr>
<th>Count</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC_0</td>
<td>Urban/nonurban environment</td>
<td>Irrelevant</td>
</tr>
<tr>
<td>SC_1</td>
<td>Current road situation and conditions</td>
<td>Not directly relevant</td>
</tr>
<tr>
<td>SC_2</td>
<td>Traffic in the opposite driving direction.</td>
<td>Irrelevant</td>
</tr>
<tr>
<td>SC_3</td>
<td>The special vehicle drives to an emergency site using the light bar. The sirene might be used.</td>
<td>Relevant</td>
</tr>
<tr>
<td>SC_4</td>
<td>The special vehicle stops at an emergency site in order to safeguard the situation. The intention of the special vehicle and the crew has to be detected. A change in the use-cases from “in operation” to “safeguarding” must be detected.</td>
<td>Relevant</td>
</tr>
<tr>
<td>SC_5</td>
<td>The special vehicle leaves an emergency site. A change in the use-cases from “safeguarding” to “in operation” might be detected depending on situation.</td>
<td>Relevant</td>
</tr>
<tr>
<td>SC_6</td>
<td>The wrecking service carries a broken vehicle using the light bar. This case is covered by usual CAMs. The wrecking service is considered as a usual vehicle in road traffic.</td>
<td>Irrelevant</td>
</tr>
</tbody>
</table>

Table 12: Scenarios

3.2 Open Issues

3.3 Feature Requests

3.4 List of abbreviations
Other (informational) RS_tcSpVe_236

ABS Anti-lock Breaking System
ASN.1 Abstract Syntax Notation One
ASR Anti-Slip Regulation
AUT Automatic Transmission
CAM Cooperative Awareness Message
C2C-CC Car to Car Communication Consortium
CDD Common Data Dictionary
DEN Decentralized Environmental Notification
DENM DEN Message
ECE Economic Commission for Europe
Table 13: Abbreviations

3.5 Applicable documents

Other (informational)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS_tcSpVe_237</td>
<td></td>
</tr>
</tbody>
</table>

[AD-1] Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service
Draft ETSI EN 302 637-3 V1.2.7 (2014-07)

[AD-2] Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service
Draft ETSI EN 302 637-2 V1.3.5 (2014-06)

[AD-3] Intelligent Transport Systems (ITS); Users and applications requirements; Part 2: Applications and facilities layer common data dictionary;
ETSI TS 102 894-2 V1.1.2 (2014-07)

[AD-4] Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint communications; Sub-part 1: Media-Independent Functionality
Draft ETSI EN 302 636-4-1 V1.0.2 (2013-09)

Table 14: Applicable documents

3.6 Related documents

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS_tcSpVe_243</td>
<td></td>
</tr>
</tbody>
</table>